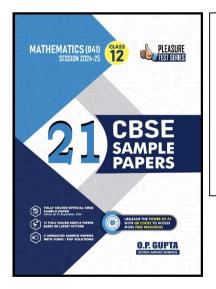
VECTOR ALGEBRA

Assignment 4 Practice by O.P. GUPTA • M. +91-9650350480

Q01.	If $(2\hat{i} + 6\hat{j} + 27\hat{k}) \times (\hat{i} + p\hat{j} + q\hat{k}) = \vec{0}$, then the value of p and q are					
	(a) $p = 6$, $q = 27$	(b) $p = 3$, $q = \frac{27}{2}$	(c) $p = 6$, $q = \frac{27}{2}$	(d) $p = 3$, $q = 27$		
Q02.		ojection of $(2\hat{i} - \hat{j} + \hat{k})$		(0)		
002	(a) 2	(b) 3	(c) 1	(d) 0		
Q03.	Vector of magnitude 5 units and in the direction opposite to $2\hat{i} + 3\hat{j} - 6\hat{k}$ is					
	(a) $\frac{5}{7}(-2\hat{i}-3\hat{j}-6\hat{k})$	(b) $\frac{3}{7}(-2\hat{i}-3\hat{j}+6\hat{k})$	(c) $(-2\hat{i} - 3\hat{j} + 6\hat{k})$	(d) $\frac{1}{7}(-2\hat{i}-3\hat{j}+6\hat{k})$		
Q04.	A unit vector in the direction opposite to $-\frac{3}{4}\hat{j}$ is					
	(a) ĵ	(b) i	(c) k	(d) $\frac{3}{4}\hat{j}$		
Q05.	Area (in Sq. units) of the triangle whose two sides are represented by the vectors $2\hat{i}$ and $-3\hat{j}$, is					
	(a) 1	(b) 2	(c) 3	(d) 4 3		
Q06.	Angle between the unit vectors \hat{a} and \hat{b} , given that $ \hat{a} + \hat{b} = 1$, is					
	(a) $\frac{5\pi}{6}$	(b) $\frac{2\pi}{3}$	(c) $\frac{\pi}{3}$	(d) $\frac{\pi}{6}$		
O07.	07. If î, ĵ, k are unit vectors along three mutually perpendicular directions, then					
Q 07.	(a) $\hat{i} \cdot \hat{j} = 1$	(b) $\hat{\mathbf{i}} \times \hat{\mathbf{j}} = 1$	(c) $\hat{i} \cdot \hat{k} = 0$	(d) $\hat{\mathbf{i}} \times \hat{\mathbf{k}} = 0$		
000	` /			• ` · • · • · · · · · · · · · · · · · ·		
Q08.	(a) $\vec{0}$	—→	sect at E. Then EA + El			
	1	(b) AD	(c) 2BC	(d) 2AD		
Q09. If $\vec{a} \cdot \vec{b} = \frac{1}{2} \vec{a} \vec{b} $, then the angle between \vec{a} and \vec{b} is						
	(a) 0°	(b) 30°	(c) 60°	(d) 90°		
Q10.	If \vec{a} is a non-zero vector, then $(\vec{a}.\hat{i})\hat{i} + (\vec{a}.\hat{j})\hat{j} + (\vec{a}.\hat{k})\hat{k}$ equals					
	(a) $\vec{0}$	(b) $-\vec{a}$	(c) \vec{a}	(d) 2a		
Q11.	The projection of the vector $\hat{\mathbf{i}} - \hat{\mathbf{j}}$ on the vector $\hat{\mathbf{i}} + \hat{\mathbf{j}}$ is					
	(a) $\vec{0}$	(b) 1	(c) 2	(d) 0		
Q12.	Let $\vec{a} = \hat{i} - 2\hat{j} + 3\hat{k}$. If	\vec{b} is a vector such that	at $\vec{a} \cdot \vec{b} = \left \vec{b} \right ^2$ and $\left \vec{a} - \vec{b} \right =$	$=\sqrt{7}$, then $ \vec{\mathbf{b}} $ equals		
	(a) 7	(b) 14	(c) $\sqrt{7}$	(d) 21		
Q13.	The value of p for which $p(\hat{i} + \hat{j} + \hat{k})$ is a unit vector is					
	(a) 0	(b) $\frac{1}{\sqrt{3}}$	(c) 1	(d) $\sqrt{3}$		
Q14.	The area of the parallelogram, whose diagonals are $2\hat{i}$ and $-3\hat{k}$, is square units.					
	(a) 2	(b) 3	(c) 1	${(d)\sqrt{3}}$		
Q15.	The value of λ for which the vectors $2\hat{\mathbf{i}} - \lambda\hat{\mathbf{j}} + \hat{\mathbf{k}}$ and $\hat{\mathbf{i}} + 2\hat{\mathbf{j}} - \hat{\mathbf{k}}$ are orthogonal, is					
			1	(d) $\sqrt{2}$		
	(a) 1	(b) 2	(c) $\frac{1}{2}$	(u) V2		
Q16.	If $ \vec{a} = 4$ and $-3 \le \lambda \le 2$ then $ \lambda \vec{a} $ lies in					

	(a) [0,12]	(b) [2,3]	(c) [8,12]	(d) [-12,8]		
Q17.	7. The area of a triangle formed by vertices O, A and B, where $\overrightarrow{OA} = \hat{i} + 2\hat{j} + 3\hat{k}$ and					
	$\overrightarrow{OB} = -3\hat{i} - 2\hat{j} + \hat{k}$ is					
	(a) $3\sqrt{5}$ sq. units	(b) $5\sqrt{5}$ sq. units	(c) $6\sqrt{5}$ sq. units	(d) 4 sq. units		
Q18.	The angle between the vectors $\hat{i} - \hat{j}$ and $\hat{j} - \hat{k}$ is					
	(a) $-\frac{\pi}{3}$	(b) 0	(c) $\frac{\pi}{3}$	(d) $\frac{2\pi}{3}$		
Q19.	If $ \vec{a} = 3$, $ \vec{b} = 4$ and $ \vec{a} \times \vec{b} = 6$, then the value of $\vec{a} \cdot \vec{b}$ is					
	(a) 12	(b) 6	(c) $3\sqrt{3}$	(d) $6\sqrt{3}$		
Q20.	If the projection of $\vec{a} = \hat{i} - 2\hat{j} + 3\hat{k}$ on $\vec{b} = 2\hat{i} + \lambda\hat{k}$ is zero, then the value of λ is					
	(a) 0	(b) 1	(c) $\frac{-2}{3}$	(d) $\frac{-3}{2}$		
Q21.	21. The position vectors of two points A and B are $\overrightarrow{OA} = 2\hat{i} - \hat{j} - \hat{k}$ and $\overrightarrow{OB} = 2\hat{i} - \hat{j} + 2\hat{k}$,					
	respectively. The position vector of a point P which divides the line segment joining A and					
	the ratio 2:1 is	2 2 2	2 2 2	2 2 2		
		(b) $2\hat{i} + \hat{j} - \hat{k}$				
Q22.	If $\vec{a} = \hat{i} + \lambda \hat{j} + \hat{k}$ and $\vec{b} = \hat{i} + \hat{j} + \hat{k}$ and $ \vec{a} + \vec{b} = \vec{a} + \vec{b} $, then the value of λ is					
	(a) 1	(b) -1	(c) 2	(d) -2		
Q23.	Write the projection of vector $\vec{r} = 3\hat{i} - 4\hat{j} + 12\hat{k}$ on (i) x-axis, and (ii) y-axis.					
Q24.	If $\vec{a} = \alpha \hat{i} + 3\hat{j} - 6\hat{k}$ and $\vec{b} = 2\hat{i} - \hat{j} - \beta\hat{k}$, then find the value of α and β so that \vec{a} and \vec{b} may be					
	collinear.					

Find the magnitude of vector \vec{a} given by $\vec{a} = (\hat{i} + 3\hat{j} - 2\hat{k}) \times (-\hat{i} + 3\hat{k})$.


Q25.

- If \vec{a} , \vec{b} and \vec{c} are three mutually perpendicular unit vectors, find the value of $|\vec{a} + 2\vec{b} + 3\vec{c}|$. Q26.
- If the sides AB and BC of a parallelogram ABCD are represented as vectors $\overrightarrow{AB} = 2\hat{i} + 4\hat{j} 5\hat{k}$ Q27. and $\overrightarrow{BC} = \hat{i} + 2\hat{j} + 3\hat{k}$, then find the unit vector along diagonal AC.
- If $\vec{a} = 2\hat{i} \hat{j} + 2\hat{k}$ and $\vec{b} = 5\hat{i} 3\hat{j} 4\hat{k}$, then find the ratio $\frac{\text{projection of vector } \vec{a} \text{ on vector } \vec{b}}{\text{projection of vector } \vec{b} \text{ on vector } \vec{a}}$ Q28.
- Let \hat{a} and \hat{b} be two unit vectors. If the vectors $\vec{c} = \hat{a} + 2\hat{b}$ and $\vec{d} = 5\hat{a} 4\hat{b}$ are perpendicular to Q29. each other, then find the angle between the vectors \hat{a} and \hat{b} .
- Find the area of the parallelogram whose one side and a diagonal are represented by coinitial O30. vectors $\hat{i} - \hat{j} + \hat{k}$ and $4\hat{i} + 5\hat{k}$ respectively.
- Find a unit vector perpendicular to each of the vectors \vec{a} and \vec{b} where $\vec{a} = 5\hat{i} + 6\hat{j} 2\hat{k}$ and O31. $\vec{b} = 7\hat{i} + 6\hat{i} + 2\hat{k}$.
- Find a vector \vec{r} equally inclined to the three axes and whose magnitude is $3\sqrt{3}$ units. Q32.
- Find the angle between unit vectors \vec{a} and \vec{b} so that $\sqrt{3}\vec{a} \vec{b}$ is also a unit vector. Q33.
- Show that for any two non-zero vectors \vec{a} and \vec{b} , Q34.

 $|\vec{a} + \vec{b}| = |\vec{a} - \vec{b}|$ iff \vec{a} and \vec{b} are perpendicular vectors.

- Q35. Show that the vectors $2\hat{\mathbf{i}} \hat{\mathbf{j}} + \hat{\mathbf{k}}$, $3\hat{\mathbf{i}} + 7\hat{\mathbf{j}} + \hat{\mathbf{k}}$ and $5\hat{\mathbf{i}} + 6\hat{\mathbf{j}} + 2\hat{\mathbf{k}}$ form the sides of a right-angled triangle.
- Q36. If $\vec{a} + \vec{b} + \vec{c} = \vec{0}$ and $|\vec{a}| = 3$, $|\vec{b}| = 5$, $|\vec{c}| = 7$ then, find the value of $\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a}$.
- Q37. If $\vec{a} = \hat{i} + 2\hat{j} + 3\hat{k}$ and $\vec{b} = 2\hat{i} + 4\hat{j} 5\hat{k}$ represent two adjacent sides of a parallelogram, find unit vectors parallel to the diagonals of the parallelogram.
- Q38. Using vectors, find the area of the triangle with vertices A(1, 2, 3), B(2, -1, 4) and C(4, 5, -1).
- Q39. Find $|\vec{a}|$ and $|\vec{b}|$, if $|\vec{a}| = 2|\vec{b}|$ and $(\vec{a} + \vec{b}) \cdot (\vec{a} \vec{b}) = 12$.
- Q40. If \hat{a} and \hat{b} are unit vectors inclined at an angle θ , then prove that $\sin \frac{\theta}{2} = \frac{1}{2} |\hat{a} \hat{b}|$.
- Q41. Show that $|\vec{a}|\vec{b} + |\vec{b}|\vec{a}$ is perpendicular to $|\vec{a}|\vec{b} |\vec{b}|\vec{a}$, for any two non-zero vectors \vec{a} and \vec{b} .
 - You may Share this PDF File with other Students and Teachers.
 - Tou may add our WhatsApp no. 9650350480 to your groups to get Regular updates.

#WE-ARE-ON-MISSION

CBSE 21 SAMPLE PAPERS

For CBSE 2024-25 Exams • Class 12 Maths (041)

Pleasure Test Series By O.P. Gupta

- Multiple Choices Questions
- **②** Assertion-Reason (A-R) Questions
- © Subjective type Questions (2 Markers, 3 Markers & 5 Markers)
- **②** CASE STUDY QUESTIONS (As per Latest format for 2024-25)
- ♥ H.O.T.S. Questions
- **© Detailed Solutions** of 16 Sample Papers
- **♦ ANSWERS** of 5 Unsolved Sample Papers (with Video Solutions)

MANY DIRECT QUESTIONS HAVE BEEN DIRECTLY TAKEN IN THE RECENT CBSE EXAMS.. #We-Are-On-Mission

For order related queries, please contact by WhatsApp @ +91 9650350480 (only message)

❖ Buy on Amazon & Flipkart

Apart from being a content developer and author, Mr O.P. GUPTA enjoys Math Learning with the Students of XI & XII @ Think Academy.

Add. 1st Floor, Opp. HP Petrol Pump, Thana Road, Dhansa Bus Stand Metro Station, Najafgarh, New Delhi

 \blacksquare Detailed **Solutions** will be uploaded on the YouTube Channel -- keep Subscribed

YouTube.com/MathematiciaByOPGupta

MATHEMATICIA BY O.P. GUPTA

...a name you can bank upon!

Feel Safe to **Share this Document** with other math scholars

CLICK NOW

TO

Download

or, just type theopgupta.com

FREE PDF TESTS AND **ASSIGNMENTS OF THE CLASSES XII, XI & X**

To get FREE PDF Materials, join **WhatsApp Teachers Group** by Clicking on the Logo

Click on the **Book cover** to buy!

CLICK HERE FOR **CLASSES** XI & XII

You can add our WhatsApp no. +919650350480 to your Groups also

Many Direct Questions from our Books have been asked in the recent CBSE Exams

ATHMISSI OR XII, XI & X

2024-25 Edition

Buv our books on

amazon

MOST REPUTED BOOKS OF XII, XI & X

MATHMISSION REFRESHER BOOKS

Our all-inclusive Refresher-Guide feature

- Theory
- **Examples**
- **Subjective Questions**
- **Multiple Choice Questions**
- Assertion Reason Questions
- **Case Study Questions**
- Answers

SOLUTIONS OF MATHMISSION

MOST TRUSTED SAMPLE PAPERS

Our popular Sample Papers Guide feature

- Official CBSE Sample Papers with Solutions
- Plenty of Fully Solved Sample Papers
- Unsolved Sample Papers for Practice

NTA CUET (UG) Mathematics Question Bank

Buy our books Online \frac{\frac{1}{12}}{12}

amazon

Scan QR-Code to buy our books on Amazon

GET BULK-ORDER @ THE DISCOUNTED PRICES FOR SCHOOLS, COACHING & TUITION INSTITUTES. For Details, Contact On

WhatsApp @ +919650350480